
CS371 2014 | NUMERICAL METHODS FOR RAY TRACING IMPLICITLY DEFINED SURFACES

Numerical Methods for Ray Tracing
Implicitly Defined Surfaces⇤

Morgan McGuire
Williams College

September 25, 2014 (Updated October 6, 2014)

Figure 1: A 60 fps interactive reference scene defined by implicit surfaces ray traced on GeForce
650M using the techniques described in this document.

Figure 2: An impressive demo of real-time ray-traced implicit surface fractals by Kali (Pablo
Roman Andrioli), implemented in about 300 lines of GLSL https://www.shadertoy.com/

view/ldjXzW .

⇤This document is an early draft of an upcoming Graphics Codex chapter.

http://graphics.cs.williams.edu/courses/cs371 1

https://www.shadertoy.com/view/ldjXzW
https://www.shadertoy.com/view/ldjXzW
http://graphicscodex.com
http://graphics.cs.williams.edu/courses/cs371

Contents

1 Primary Surfaces 3

2 Analytic Ray Intersection 3

3 Numerical Ray Intersection 3

4 Ray Marching 4

5 Distance Estimators 5

6 Sphere Tracing 5

7 Some Distance Estimators 6
7.1 Sphere . 6
7.2 Plane . 6
7.3 Box . 6
7.4 Rounded Box . 7
7.5 Torus . 7
7.6 Wheel . 7
7.7 Cylinder . 8

8 Computing Normals 8

9 A Simple GLSL Ray Caster 9

10 Operations on Distance Estimators 11

11 Some Useful Operators 12
11.1 Union . 12
11.2 Intersection . 12
11.3 Subtraction . 12
11.4 Repetition . 13
11.5 Transformation . 13
11.6 Blending . 13

12 Increasing Performance 13
12.1 Over-Relaxation . 14
12.2 Bounding Spheres . 14
12.3 Reintroducing Analytic Roots . 16
12.4 Other Optimization Strategies . 16

13 Some Online Examples 17
13.1 Educational . 17
13.2 Impressive . 18

14 Further Reading 18

CS371 2014 | NUMERICAL METHODS FOR RAY TRACING IMPLICITLY DEFINED SURFACES

1 Primary Surfaces

The first step in a computational graphics solution for rendering an image is finding the surface
points that primary rays traced backwards from the camera strike. These are the points that can
scatter light into the camera, so they are the important ones to shade. The remaining steps are com-
puting the incident illumination at those points, the illumination scattered back along the primary
rays, and the filtering and post-processing of all rays to construct an appropriate image for display.

Two dominant methods for finding primary ray intersections with the scene are ray casting and
rasterization. These methods leverage the same underlying mathematics of solving for the point
closest to the ray origin that satisfies a primary ray’s explicit equation and the primitive’s (e.g.,
triangle’s, sphere’s) implicit equation.

An explicit equation for a surface generates points on the surface from parameters; for a ray
with origin P and direction !̂, it is X(t) = P + !̂t. An implicit equation for a surface defines
the set of points on it through an inclusion test; for a sphere with center C and radius r, it is
{X | ||X � C|| = r}. Solving for the intersection involves substituting the explicit equation into
the implicit one to form a single equation with t as the only variable. and then solving for t. This
is equivalent to finding the roots of the 1D scalar version of the implicit equation that lies along the
ray.

Ray casting iterates first over rays and second over primitives, while rasterization inverts that
structure. This leads to different opportunities for amortization and data structures, and thus differ-
ent properties for each algorithm. One advantage of ray casting is that it can more easily accommo-
date a wide range of primitive types.

2 Analytic Ray Intersection

An equation has an analytic solution when the exact solution can be found by an algorithm inde-
pendent. For example, the solution to any second-order equation in variable t,

at

2
+ bt+ c = 0 (1)

is given by the quadratic formula,

t =

�b±
p
b

2 � 4ac

2a

(2)

Analytic solutions exist for the intersection of a ray and certain primitives. These include the
sphere/ball, plane, planar polygon (notably, the triangle), cylinder, cone, and torus. It is not surpris-
ing that these surfaces admit analytic solutions, since implicit equations are first- and second-order
polynomials amenable to the quadratic formula. It should also not be surprising that there is no
analytic solution for the intersection of a ray with a surface defined by a fifth-order polynomial,
since no closed-form solution to a general quintic in terms of radicals can exist. (Technically, third-
and fourth-order surfaces could be intersected analytically, however, the closed-form solutions are
computationally demanding compared to the quadratic formula.) Some non-polynomial equations
(such as simple trigonometric expressions) admit analytic solutions, although many do not.

3 Numerical Ray Intersection

The existence of implicitly defined surfaces for which there is no analytic solution to ray intersection
motivates a general method for ray-primitive intersection. Fortunately, iterative numerical methods

http://graphics.cs.williams.edu/courses/cs371 3

http://graphics.cs.williams.edu/courses/cs371

CS371 2014 | NUMERICAL METHODS FOR RAY TRACING IMPLICITLY DEFINED SURFACES

for root-finding have been well studied for centuries. Techniques such as Newton-Raphson iteration,
the secant method, and gradient descent perform a guided search over the space of a function to find
its roots. Different methods have different convergence properties and guarantees, mostly based on
what is known about the function itself.

4 Ray Marching

Consider an example for of solving for the root of the equation that gives the intersection of a ray
and a sphere:

g(t) = ||X + !̂t� C||� r = 0 (3)
A simple approach called ray marching iterates t through the domain of function g in fixed steps1:
def findRootNaive(g):

dt = 0.01
t = 0
while g(t) != 0:

t = t + dt
return t

This “marches” through every point X = P + !̂t on the ray until it finds a t that yields X on the
surface of the sphere. Of course, this naive ray marching scheme is unlikely to exactly land on the
exact value of t for which g(t) = 0, so the code will almost always loop forever. A better solution
enforces a maximum distance bound and seeks the first value at which g crosses from positive to
nonpositive, at which point the ray must have passed through the surface:
def findRoot(g, maxDistance):

dt = 0.01
t = 0
while (t < maxDistance) and (g(t) > 0):

t = t + dt
return t

We can further refine this approach using binary search within the final fixed interval [tn�1, tn]

where g passed from positive to nonpositive.
Ray marching with fixed steps has three advantages over analytic ray intersections:

• Very simple to implement

• Works for any implicitly defined surface

• Naturally extends to integration of scattering in participating media such as fog

Ray marching with fixed steps has two obvious disadvantages over analytic ray tracing. The first
is that it can miss the intersection for a non-convex shape. The second is that it takes at least
linear time in the distance to the intersection for rays that do intersect the surface and linear time in
maxDistance for rays that do not intersect. Analytic ray tracing is guaranteed to not only find the
intersection, but do it in constant time.

We can address both the performance disadvantage and the missed intersection disadvantage
of fixed-step ray marching with a simple improvement that only slightly constrains the surface
description.

1I’m using Python/pseudocode here because higher-order function types have awkward syntax many other languages
and would obscure the interesting parts of the iteration. I switch to GLSL for the “cookbook” sections of this document.

http://graphics.cs.williams.edu/courses/cs371 4

http://graphics.cs.williams.edu/courses/cs371

CS371 2014 | NUMERICAL METHODS FOR RAY TRACING IMPLICITLY DEFINED SURFACES

5 Distance Estimators

We originally defined g(t) = 0 as the surface and implicitly required only that g(t) > 0 at the ray
origin P and g was continuous. Now, let us require the surface to be an embedded manifold without
boundary, i.e., the surface of a solid object, and refine our constraints so that g is a signed distance
estimator: require that g(t) is less than or equal to than the distance to the surface.

Because we’re working with surfaces in three dimensions and will wish to cast rays from many
different origins (e.g., primary rays, shadow rays, mirror rays), it will be convenient to define a
distance estimator on three-space instead of the ray parameter. Let “minimum height above the
surface” h(X) = g(P + !̂t) be a signed distance estimator for a surface. For the sphere, one
function that satisfies this is simply the original implicit equation: hsphere(X) = ||X � C||� r.

The h = 0 surface is sometimes called the isosurface, although technically it is the h = 0 isosur-
face. Fluids are often modeled with a large number of particles, which are collectively rendered by
forming a single distance estimator that is the sum of a large number of “blob” distance estimators.
In this case, the term level set is sometimes used to describe the surface.

6 Sphere Tracing

Given a distance estimator, h(X), we now have an upper bound on how far is safe to step to avoid
marching the ray over the intersection. Because h returns a bound on the distance in any direction,
we can move at least that far along the direction !̂ of the ray. In other words, if we put a sphere
of radius h(X) at point X , it at most touches the primitive (which is also a sphere in our example)
that we’re tracing against, and may not even touch it. That new virtual sphere can’t possibly in-
tersect the primitive more deeply because of the distance estimator guarantee. So, we can jump to
testing the next point at the surface of the virtual sphere. This method for advancing the ray (which
traces rays against arbitrary primitives and has no “spheres” necessarily involved) is called sphere
tracing [Hart 1996].

def sphereTrace(P, w, h, maxDistance):
epsilon = 0.0000001 # How close we want to get to the surface
minStep = 0.0001 # Minimum step through space to enforce

t = 0
dt = h(P + w * t)
while (t < maxDistance) and (dt > epsilon):

t = t + max(dt, minStep)
dt = h(P + w * t)

return t

Why is iteration necessary? Doesn’t h give the distance to the surface immediately? If h gave
the exact distance to the surface, then the while loop would be unnecessary. However, recall that
h is a conservative estimate of the distance. If the surface is 1m from a point X , then h(X) might
return 0.1m. So, we must iterate until h(X) converges to zero, or at least very nearly so.

The minStep constant is necessary to ensure that the ray continues to advance even when asymp-
totically approaching a surface. It is particularly important for achieving reasonable performance
in the face of an overly conservative distance estimator or at locations where the ray just barely
passes by the surface. One could additionally impose an explicit iteration limit independent of the
minimum step size. Keinert et al. [2014] recommend tracking and returning t corresponding to the
closest point ever found to the ray instead of the marching end point when terminating after a fixed

http://graphics.cs.williams.edu/courses/cs371 5

http://graphics.cs.williams.edu/courses/cs371

CS371 2014 | NUMERICAL METHODS FOR RAY TRACING IMPLICITLY DEFINED SURFACES

number of iterations.
As before, we can extend this root finding method to perform binary search to refine the end hit

point. Because h is a signed distance estimator, we can even do so fairly efficiently, since once the
ray passes through the surface we can re-approach it accurately from the inside.

7 Some Distance Estimators

This section is adapted from, and uses images from, http://www.iquilezles.org/www/
articles/distfunctions/distfunctions.htm by Iñigo Quilez, 2008.

For these definitions, let max(~v) = max(xv, yv, zv), |~v| = (|xv|, |yv|, |zv|), and let max(~a,

~

b) =

(max(xa, xb),max(ya, yb),max(za, zb)). The code samples are in GLSL using some common
utilities and HLSL compatibility definitions. These are defined in the G3D Innovation Engine’s
g3dmath.glsl and compatibility.glsl files. For example,
#define Point3 vec3
#define lerp mix
float maxComponent(vec3 v) { return max(v.x, max(v.y, v.z)); }
float saturate(float x) { return clamp(x, 0.0, 1.0); }

7.1 Sphere
The sphere about point C with radius r:

h(X) = kX � Ck � r (4)

float sphereDistance(Point3 X, Point3 C, float r) {
return length(X - C) - r;

}

7.2 Plane
The plane with point C and normal n̂:

h(X) = (X � C) · n̂ (5)

float planeDistance(Point3 X, Point3 C, Vector3 n) {
return dot(X - C, r);

}

7.3 Box

The box with center C and vector~b from the center to the first-quadrant corner:

Let ~d = |X � C|�~

b

h(X) = min(max(d), 0) + kmax(d, (0, 0, 0))k ; (6)

float boxDistance(Point3 X, Vector3 b) {
Vector3 d = abs(X - C) - b;
return min(maxComponent(d), 0) + length(max(d, Vector3(0, 0, 0)));

}

http://graphics.cs.williams.edu/courses/cs371 6

http://www.iquilezles.org/www/articles/distfunctions/distfunctions.htm
http://www.iquilezles.org/www/articles/distfunctions/distfunctions.htm
http://sourceforge.net/p/g3d/code/HEAD/tree/G3D10/data-files/shader/g3dmath.glsl
http://sourceforge.net/p/g3d/code/HEAD/tree/G3D10/data-files/shader/compatibility.glsl
http://graphics.cs.williams.edu/courses/cs371

CS371 2014 | NUMERICAL METHODS FOR RAY TRACING IMPLICITLY DEFINED SURFACES

7.4 Rounded Box

The hollow rounded box with center C, edge half-lengths in vector~b, and rounding radius r:

h(X) =

���max

⇣
|X � C|�~

b, (0, 0, 0)

⌘���� r; (7)

float roundedBoxDistance(Point3 X, Vector3 b, float r) {
return length(max(abs(X - C) - b, Vector3(0, 0, 0))) - r;

}

7.5 Torus
The torus about the x-axis with centroid C, minor radius r, and major radius R:

h(X) =

���
⇣���

p
(xX � xC)

2
+ (zX � zC)

2 � r

��� , yX � yC

⌘����R (8)

float torusDistance(Point3 X, Point3 C, float r, float R) {
return length(vec2(length(X.xz - C.xz) - r, X.y - C.y)) - R;

}

7.6 Wheel
The “wheel” about the x-axis with centroid C, minor radius r, and major radius R is the same as
the torus above, but with a non-Euclidean definition of “distance”:

h(X) =

���
⇣���

p
(xX � xC)

2
+ (zX � zC)

2 � r

��� , yX � yC

⌘���
8
�R (9)

Here, k~vkn is the n-norm: n
p
x

n
v + y

n
v + z

n
v . Higher-order norms like this can be substituted into

most distance estimators to square off edges; compare the wheel on the right to the torus above it.

float pow8(float x) {
x *= x; // xˆ2
x *= x; // xˆ4
return x * x;

}

float length8(Vector2 v) {
return pow(pow8(v.x) + pow8(v.y), Vector2(1.0 / 8.0, 1.0 / 8.0));

}

float wheelDistance(Point3 X, Point3 C, float r, float R) {
return length8(Vector2(length(X.xz - C.xz) - r, X.y - C.y)) - R;

}

http://graphics.cs.williams.edu/courses/cs371 7

http://graphics.cs.williams.edu/courses/cs371

CS371 2014 | NUMERICAL METHODS FOR RAY TRACING IMPLICITLY DEFINED SURFACES

7.7 Cylinder
The cylinder with centroid C, radius r, and half-extent e:

Let ~d =

���
⇣���

p
(xX � xC)

2
+ (zX � zC)

2 � r

��� , yX � yC

⌘���� (r, e) (10)

h(X) = min(max(xd, yd), 0) + kmax(

~

d, (0, 0))k (11)

float cylinderDistance(Point3 X, Point3 C, float r, float e) {
Vector2 d = abs(Vector2(length(X.xz - C.xz), X.y - C.y)) - Vector2(r, e);
return min(maxComponent(d), 0) + length(max(d, Vector2(0, 0)));

}

8 Computing Normals

The gradient of any function on 3-space can be approximated by numerical differentiation:

rh(X) =

✓
@h(X)

@x

,

@h(X)

@y

,

@h(X)

@z

◆

⇡ 1
2✏ (h(X + x̂✏)� h(X � x̂✏), h(X + ŷ✏)� h(X � ŷ✏), h(X + ẑ✏)� h(X � ẑ✏))

⇡ 1
✏ [h(X)� (h(X + x̂✏), h(X + ŷ✏), h(X + ẑ✏))] (12)

If the distance estimator is not too conservative near the surface, or at least is conservative by the
same factor in all directions, we can use this to find the surface normal.

For a point X near the surface, normalizing the gradient by dividing through by its length gives
the surface normal vector to the nearby surface. Placing X exactly on the surface can be problem-
atic for this computation, however. For example, for a sufficiently curvy surface, a particular ✏ value
chosen may place all samples of h at another location on the surface, for which h = 0.

http://graphics.cs.williams.edu/courses/cs371 8

http://graphics.cs.williams.edu/courses/cs371

CS371 2014 | NUMERICAL METHODS FOR RAY TRACING IMPLICITLY DEFINED SURFACES

9 A Simple GLSL Ray Caster

This section describes the ray casting portion of a simple GLSL ray marching tracer that runs on
the GPU using the G3D Innovation Engine 10. See http://codeheartjs.com/examples/
raytrace/ for a comparable Javascript version that runs in a web browser, and http://codeheartjs.
com/examples/fastraytrace/ for an optimized Javascript version. See http://graphics.
cs.williams.edu/courses/cs371/f14/reading/gpu-tracing-tutorial.zip
for a working example of an analytic ray tracer in C++ and GLSL.

The GLSL ray marcher below uses rasterization to submit two giant triangles that cover the entire
viewport with a 2D projection matrix. It then launches the ray tracing shader kernel at each pixel,
passing it the 3D camera’s orientation and projection matrix. The C++ syntax for setting up this call
in OpenGL is:

rd->push2D();
Args args;

args.setUniform("cameraToWorldMatrix", activeCamera()->frame());

args.setUniform("tanHalfFieldOfViewY",
float(tan(activeCamera()->projection().fieldOfViewAngle() / 2.0f)));

// Projection matrix, for writing to the depth buffer.
Matrix4 projectionMatrix;
activeCamera()->getProjectUnitMatrix(rd->viewport(), projectionMatrix);
args.setUniform("projectionMatrix22", projectionMatrix[2][2]);
args.setUniform("projectionMatrix23", projectionMatrix[2][3]);

// A cube map Texture
m_skybox->setShaderArgs(args, "skybox_", Sampler::cubeMap());

// Set the domain of the shader to the viewport rectangle
args.setRect(rd->viewport());

LAUNCH_SHADER("trace.pix", args);
rd->pop2D();

The GLSL code within the referenced trace.pix shader sets up the primary ray and then
marches it through the scene. I’ve also rigged it to write a depth buffer value that is compatible
with rasterization so that rasterized and ray traced primitives may be mixed in the frame buffer.
Furthermore, this enables the use of standard post-processing tricks such as single-image depth of
field, or even depth-buffer based ambient occlusion as a post process.

http://graphics.cs.williams.edu/courses/cs371 9

http://g3d.sf.net
http://codeheartjs.com/examples/raytrace/
http://codeheartjs.com/examples/raytrace/
http://codeheartjs.com/examples/fastraytrace/
http://codeheartjs.com/examples/fastraytrace/
http://graphics.cs.williams.edu/courses/cs371/f14/reading/gpu-tracing-tutorial.zip
http://graphics.cs.williams.edu/courses/cs371/f14/reading/gpu-tracing-tutorial.zip
http://graphics.cs.williams.edu/courses/cs371

CS371 2014 | NUMERICAL METHODS FOR RAY TRACING IMPLICITLY DEFINED SURFACES

#version 330 // -*- c++ -*-
#include <g3dmath.glsl>
#include <Texture/Texture.glsl>

// Input arguments from the C++ program
uniform mat4x3 cameraToWorldMatrix;
uniform float tanHalfFieldOfViewY;
uniform float projectionMatrix22, projectionMatrix23;
uniform_Texture(samplerCube, skybox_);

// Output to the App::m_framebuffer
out Color3 pixelColor;

void main() {
// Generate an eye ray in camera space, and then transform to world space

// Primary ray origin
Point3 P = cameraToWorldMatrix[3];

// Primary ray direction
Vector3 w = Matrix3(cameraToWorldMatrix) *

normalize(Vector3((gl_FragCoord.xy - g3d_FragCoordExtent / 2.0) *
Vector2(1, -1), g3d_FragCoordExtent.y /

(-2.0 * tanHalfFieldOfViewY)));

float distance = inf;
pixelColor = traceRay(P, w, distance);

// Camera space z value
float csZ = maxDist / w.z;

// Pack into standard OpenGL depth buffer format to make the result
// compatible with rasterization and post-processing.
gl_FragDepth = (maxDist == inf) ? 1.0 :

((projectionMatrix22 * csZ + projectionMatrix23) / -csZ);
}

http://graphics.cs.williams.edu/courses/cs371 10

http://graphics.cs.williams.edu/courses/cs371

CS371 2014 | NUMERICAL METHODS FOR RAY TRACING IMPLICITLY DEFINED SURFACES

Figure 3: The result
of the simple GLSL ray
marcher.

The actual tracing code is below. This example defines the scene
to be a single, yellow sphere at the origin with a radius of 1. To make
it easier to orient the viewer when investigating the scene with the
default camera, I also placed a cube map skybox in the background.

For a full ray tracer, we’d shade the intersection ray and possibly
spawn additional rays for reflection, refraction, and shadows.

float sceneDistance(Point3 X) {
const Point3 C = Point3(0,0,0);
const float r = 1.0;
return length(X - C) - r;

}

// Returns true if something was hit.
// Sets L_o if the ray reached infinity or if it hit something before distance
// If something was hit, updates distance
bool traceRay(Point3 P, Vector3 w, out L_o, inout float distance) {

const float maxDistance = 1e10;
const int maxIterations = 50;
const float closeEnough = 1e-2;
float t = 0;
for (int i = 0; i < maxIterations; ++i) {
float dt = sceneDistance(P + w * t);

t += dt;
if (dt < closeEnough) {

distance = t;
L_o = Radiance3(1, 1, 0);
return true;

} else if (t > distance) {
// Too far; there is some known closer intersection
return false;

}
}

// Reached infinity
L_o = texture(skybox_buffer, w).rgb * skybox_readMultiplyFirst.rgb;
return false;

}

This kind of setup is common in the modern demoscene and many examples of artistically impres-
sive demos and intros based around this technique can be found at pouet.net. Smaller single-
shader examples with source code can be found at shadertoy.com and glslsandbox.com.

10 Operations on Distance Estimators

An advantage of modeling surfaces with distance estimators is that it is much easier to perform
operations on whole shapes in that model than it is when they have explicit triangle representations
or direct implicit definitions.

Operators on distance estimators are higher-order functions: they take functions as input and
return functions as output. In a language such as Javascript or Scheme that has full support for
closures, this can be implemented directly with functions. See http://codeheartjs.com/

http://graphics.cs.williams.edu/courses/cs371 11

pouet.net
shadertoy.com
glslsandbox.com
http://codeheartjs.com/examples/raytrace
http://codeheartjs.com/examples/raytrace
http://graphics.cs.williams.edu/courses/cs371

CS371 2014 | NUMERICAL METHODS FOR RAY TRACING IMPLICITLY DEFINED SURFACES

examples/raytrace for an example that runs in a web browser. In a language such as Java
or C++, classes and inheritance can mimic the design pattern. A simple substitution-compiled
language like GLSL with provides none of these language features for abstracting computation.
They can be emulated using macros and overloading or one can directly expand that code by hand,
for example,

float unionDistance(float d1, float d2) {
return min(d1, d2);

}

float doubleSphere(Point3 X) {
return unionDistance(sphereDistance(X, Point3(-1, 0, 0), 1),

sphereDistance(X, Point3(1, 0, 0), 1));
}

11 Some Useful Operators

This section is adapted from, and uses images from, http://www.iquilezles.org/www/
articles/distfunctions/distfunctions.htm by Iñigo Quilez, 2008.

11.1 Union
Union selects the closer surface. This is equivalent to a set sum (but not a distance sum).

(h [g)(X) = min(h(X), g(X)) (13)

float unionDistance(float d1, float d2) {
return min(d1, d2);

}

11.2 Intersection
Intersection selects the farther surface.

(h \ g)(X) = min(h(X), g(X)) (14)

float intersectionDistance(float d1, float d2) {
return max(d1, d2);

}

11.3 Subtraction
Set subtraction inverts one of the functions and then intersects it with the other.

(h� g)(X) = max(h(X),�g(X)) (15)

float subtractionDistance(float d1, float d2) {
return max(d1, -d2);

}

http://graphics.cs.williams.edu/courses/cs371 12

http://codeheartjs.com/examples/raytrace
http://codeheartjs.com/examples/raytrace
http://www.iquilezles.org/www/articles/distfunctions/distfunctions.htm
http://www.iquilezles.org/www/articles/distfunctions/distfunctions.htm
http://graphics.cs.williams.edu/courses/cs371

CS371 2014 | NUMERICAL METHODS FOR RAY TRACING IMPLICITLY DEFINED SURFACES

11.4 Repetition
Any distance function can be tiled across space with period ~v across the dimensions.

repeat(h, ~p)(X) = h ((X mod ~v)� ~v/2) (16)

Note that floating-point modulo in GLSL is notated with the mod function, not the % operator.

11.5 Transformation
Transforming a shape is equivalent (from the reference frame of the distance estimator) to inversely
transforming the points tested against it. In doing so, we need to be careful about how we have
scaled space, however. To transform a shape by an invertible 4 ⇥ 4 rotation-translation-dilation
(uniform, non-zero scale) matrix M ,

(Mh)(X) = h(M

�1
X) · detM, (17)

where the expression on the right is the determinant M .
Because rotation, translation, and non-zero dilation all have trivial inverses and determinants it is

not usually necessary to apply the full inverse and determinant operations. For example scaling a
primitive by scalar factor s > 0 is simply:

scale(h, s)(X) = h(X/s) · s. (18)

Note that if a transformation of a simple primitive is desired, it may be more efficient to let
C = (0, 0, 0) in the original primitive’s definition so that it is centered at the origin and then perform
a single transformation to the desired reference frame.

11.6 Blending
With some care to preserve the conservative property of distance estimation, shapes can be blended
for a kind of smooth union. Hoffman and Hopcroft [1985] derive the general case of this, which
is commonly referred to as a union using a “smooth min” (smin) function in place of a straight
min function. There are many smooth min functions, with a variety of performance and quality
tradeoffs. Quilez and I recommend a fast polynomial version:

float smin(float a, float b, float blendRadius) {
float c = saturate(0.5 + (b - a) * (0.5 / blendRadius));
return lerp(b, a, c) - blendRadius * c * (1.0 - c);

}

12 Increasing Performance

Performance is always a concern in rendering. The performance of ray marching can be increased
at the cost of image quality by increasing the minimum step size and accepted distance from the
surface, and by decreasing the maximum iterations permitted and resolution. However, it can also
be increased by algorithmic improvements that do not affect image quality. Instead, the cost is
some of the elegant simplicity of the naive method. However, Compared to analytic ray casting
and rasterization, optimized ray marching remains remarkably straightforward and accessible to
implement.

http://graphics.cs.williams.edu/courses/cs371 13

http://graphics.cs.williams.edu/courses/cs371

CS371 2014 | NUMERICAL METHODS FOR RAY TRACING IMPLICITLY DEFINED SURFACES

Figure 4: Top: sample points in white and “unbounding spheres” in purple from sphere tracing.
Bottom: Over-relaxed sphere tracing can speculatively take larger steps (red) until it fails to find
consecutive bounds (yellow) and falls back to sphere tracing.

12.1 Over-Relaxation
Keinert et al. [2014] make an observation that allows decreasing the number of iterations before
binary search by up to a factor of two. Hart’s sphere tracing uses the distance estimator h creates a
series of “unbounding” spheres as the ray approaches a surface. The h(X) = 0 isosurface cannot lie
within any of these spheres. Therefore, if the unbounding spheres at X and Y overlap, the surface
cannot intersect the line segment XY .

This observation allows speculatively advancing the ray by �t = k · h(X) for 1 k 2 as
follows. Let the new point be Y = X + !̂�t. If h(Y) � k · h(X), then there was no intersection
on XY and the speculative advancement was conservative and can be accepted. Otherwise the ray
can still be advanced from X by �t = h(X). Keinert et al. call this over-relaxed sphere tracing
(figure 4. Naive sphere tracing advances the ray with only k = 1, often discovering that the next
point redundantly covers the interval just traversed.

Figure 5: The Timeless

Over-relaxation is obviously most useful when the distance
estimator in space is overly conservative for distance to the
surface along the ray. There is a tradeoff between setting k

close to 2 to gain the largest possible step and setting k close
to 1 to reduce the number of times the speculative advance-
ment fails. Because success doubles the step distance and
failure doubles the number of evaluations of distance estima-
tor h per iteration, over-relaxed sphere tracing can double or
halve the performance compared to naive sphere tracing. Keinert et al. observe that k = 1.2 gives
a net 25% reduction in tracing time for the complex urban environment in figure 5 that appeared in
the Mercury demoscene production The Timeless (http://www.pouet.net/prod.php?which=
62935).

12.2 Bounding Spheres
When working with implicit surfaces, operations on distance estimators make it possible to build
complex scenes by layering operations on simple primitives. Doing so offers great expressive power
and programming elegance at a potentially high performance cost. This is because rays that pass
nowhere near a surface must still evaluate the distance function for it.

http://graphics.cs.williams.edu/courses/cs371 14

http://www.pouet.net/prod.php?which=62935
http://www.pouet.net/prod.php?which=62935
http://graphics.cs.williams.edu/courses/cs371

CS371 2014 | NUMERICAL METHODS FOR RAY TRACING IMPLICITLY DEFINED SURFACES

A complicated set of operations on distance estimators inherently forms a scene graph tree of
computation through function invocation. Performance can be increased by avoiding descending
branches of that tree that do not affect the result. This kind of pruning is a common computer
science operation and yields order-of-growth increases, unlike the kind of small constant factor that
can be obtained by micro-optimizing within a single distance estimator.

The easiest way to prune the tree is to abort computation within a distance estimator when an
early, inexpensive test determines that the ray is very far from the surface. A simple bounding sphere
accomplishes this and correctly returns a still-conservative value. For example, let expensiveDE
be a computationally-expensive distance estimator for an surface that is known to be entirely con-
tained within the sphere with center C and radius r. A fast bounding estimator first tests how close
the point X is to the bounding sphere. This must be a distance less than that to the true surface. It
then only invokes the full, expensive estimator if X lies within the bounding sphere.

float boundingDE(Point3 X, Point3 C, float r) {
float t = length(X - C) - r;
if (t > 0) { return t; } else { return expensiveDE(X); }

}

Square root is one of the most expensive operations to perform on a GPU. We can slightly increase
the performance of the slow case without affecting the fast branch by delaying the square root until
the inside of the branch:

float boundingDE(Point3 X, Point3 C, float rSquared) {
Point3 v = X - C;
float tSquared = dot(v, v) - rSquared;
if (tSquared > 0) {

return sqrt(tSquared);
} else {

return expensiveDE(X);
}

}

It is also a good idea to branch to the full, expensive distance estimator if X is even close to the
sphere. That is because the silhouettes of objects are the most expensive to trace using a numerical
root finder. A ray passing by in a direction tangent to the surface appears to be very close to the
surface to the omni-directional distance estimator, so the ray marching iterator takes very small
steps, even though the ray is not actually approaching the surface quickly. Introducing a false
silhouette around each object through the bounding sphere can exacerbate this problem. We can
separate the bounding radius from the test value to avoid this problem:

float boundingDE(Point3 X, Point3 C, float rSquared) {
Point3 v = X - C;
float tSquared = dot(v, v) - rSquared;
if (tSquared > rSquared * 0.2) {

return sqrt(tSquared);
} else {

return expensiveDE(X);
}

}

http://graphics.cs.williams.edu/courses/cs371 15

http://graphics.cs.williams.edu/courses/cs371

CS371 2014 | NUMERICAL METHODS FOR RAY TRACING IMPLICITLY DEFINED SURFACES

12.3 Reintroducing Analytic Roots
Geometric planes are are large surfaces that can cover a large amount of the screen. A ray caster
following any ray near the plane will be constrained to march in steps no larger than the elevation
of the ray above the plane, which may be quite small compared to the true distance to the next
intersection with the scene. We can therefore obtain a good speedup for scenes with ground planes
by performing the (efficient) analytic intersection with the plane and then using the ray marcher
only for other surfaces. Spheres are a border case. The distance estimator is extremely fast and
yields good estimates along the ray on the interior and far from the sphere. Yet for rays that pass
near the silhouette, an analytic solution is far faster than a ray marched one.

Figure 6 shows on the left a rendering of a scene composed of implicit surfaces. On the right
is a visualization of the number of invocations of the scene distance estimator at each pixel, where
brighter pixels are more expensive. This scene uses the analytic ground plane and bounding sphere
optimizations.

Figure 6: Left: A reference scene of many different shapes defined by implicit surfaces. The distance
estimator is used for primary rays, (soft) shadow rays, and ambient occlusion. Left: Visualization
of the number of scene distance estimator invocations at each pixel; black = 0, white = 20.

Note that in this figure, silhouettes and surfaces seen at glancing angles are far more expensive
than the interiors of objects, which are almost as efficient to trace as the ground plane itself. The
screw-like shape and the heightfield are expensive because they have very conservative distance
estimators. The silhouettes of shadows are also expensive–those are places where the ray for the
visibility query to the light passes close to a surface and thus slows down as it approaches.

12.4 Other Optimization Strategies
Soft shadows, ambient occlusion, and in some cases antialiased pixels and depth of field can all
be approximated efficiently using distance estimators because they track how close a point is to
all surfaces in the scene. Under analytic ray tracing, these instead must be estimated using tens or
hundreds of rays per pixel.

Once objects are surrounded in bounding spheres, traditional spatial subdivision data structures
can be applied to them. For example, it is simple to compute a bounding volume hierarchy on the
bounding spheres. However, using a data structure on a GPU in graphics mode is a bit tricky because
GLSL executes function invocation by inlining. Thus there is no true recursion for traversing a tree
in a natural way. This also makes it hard to implement reflection and refraction at the same surface
under Whitted ray tracing, since that creates a tree of rays. (Path tracing, photon tracing, and one of
reflection or refraction without the other can all be implemented using loops.)

There are three solutions for the lack of recursion. One is to build a stack global memory using

http://graphics.cs.williams.edu/courses/cs371 16

http://graphics.cs.williams.edu/courses/cs371

CS371 2014 | NUMERICAL METHODS FOR RAY TRACING IMPLICITLY DEFINED SURFACES

OpenGL 4 image buffer operations. This has awkward syntax and can be slow. Another is to build a
stack in local memory. This can be accomplished for recursive rays on recent hardware using code
like the listing below. A similar explicit stack can be used to traverse data structures.

struct RayStackFrame {
Point3 origin;
Vector3 direction;
Color3 weight;

};

RayStackFrame stack[MAX_STACK];
int stackTop = 0;

...
stack[0] = RayStackFrame(X, w, Color3(1, 1, 1));
while (stackTop >= 0) {

Color3 weight = stack[stackTop].weight;
...
if (reflection) {

// cast a recursive ray by pushing onto the stack
// and attenuating by the magnitude of the BSDF impulse
...
++stackTop;

}
L_o += weight * L_scattered;

}

Beware that local memory is significantly slower than register memory (where other local vari-
ables are stored), although significantly faster than global memory. Local memory is frequently
implemented as a portion of the L1 cache. Also beware that on older hardware without local mem-
ory support, relative indexing into an array can compile to a chain of conditionals because there
are no relative memory operations on arrays. Some register-only tree traversal strategies developed
the introduction of local and global memory write operations are appropriate for older hardware
and may find renewed value for performance even on newer targets [Horn et al. 2007; Popov et al.
2007].

Analytic and numerical roots can be mixed within a scene, as we did for the ground plane. Our
simple ray tracer produces depth buffer values compatible with OpenGL’s triangle rasterization, so
implicit surfaces may be mixed freely with all primary ray strategies.

13 Some Online Examples

13.1 Educational

I wrote these three heavily-documented examples to demonstrate how to set up an analytic and a
ray marching renderer. These are on the Shadertoy website, which uses WebGL, a limited version
of the full OpenGL supported by G3D. So, the code is a little less efficient and clear than the best
case, but has the advantage of running in most current web browsers.

Analytic Tracer
https://www.shadertoy.com/view/XdsGWS

http://graphics.cs.williams.edu/courses/cs371 17

https://www.shadertoy.com/view/XdsGWS
http://graphics.cs.williams.edu/courses/cs371

CS371 2014 | NUMERICAL METHODS FOR RAY TRACING IMPLICITLY DEFINED SURFACES

Mandelbulb Explained
https://www.shadertoy.com/view/XsXXWS

Legos
https://www.shadertoy.com/view/Xdl3Dj

13.2 Impressive
These three examples are by Iñigo Quilez, a graphics professional who works at Pixar on feature
films and has long contributed to the demoscene and online graphics community. These are three of
the most impressive demos on the Shadertoy website and good (if a bit hard for the novice to parse)
examples of how to use the implicit surface techniques described in this document.

Dolphin
https://www.shadertoy.com/view/4sS3zG

Mike
https://www.shadertoy.com/view/MsXGWr

Elevated
https://www.shadertoy.com/view/MdX3Rr

14 Further Reading

Implicit surfaces were first rendered using numerical root finding by Blinn [1982]. They’ve since
been advanced significantly through research by many others. Gomes et al. give a good survey in
their book [2009].

The academic graphics community has largely worked in parallel with the demoscene community,
which has been ray tracing these in real time with similar techniques since at least the early 2000’s,
but which has only recently begun to document and share their methods widely. Quilez has been
a leading voice in spreading information about demoscene techniques through his personal website
http://www.iquilezles.org/, the Shadertoy website, and recently some public presenta-
tions [Quilez 2008] and online videos [Quilez 2014]. Swoboda’s GDC 2012 presentation [2012]
overviews the material from this document and then describes some of the performance issues on
modern GPUs.

I’ve simplified some of the details of sphere tracing and distance estimators in this explanation.
See Hart’s SIGGRAPH course notes [1993] or Liktor’s survey paper [2008] for more details on the
mathematical constraints and ways of choosing optimal step sizes based on derivatives. See Keinert
et al.’s [2014] paper for the current state of the art.

http://graphics.cs.williams.edu/courses/cs371 18

https://www.shadertoy.com/view/XsXXWS
https://www.shadertoy.com/view/Xdl3Dj
https://www.shadertoy.com/view/4sS3zG
https://www.shadertoy.com/view/MsXGWr
https://www.shadertoy.com/view/MdX3Rr
http://www.iquilezles.org/
http://graphics.cs.williams.edu/courses/cs371

CS371 2014 | NUMERICAL METHODS FOR RAY TRACING IMPLICITLY DEFINED SURFACES

One of the most interesting applications of numerical methods for ray intersection is render-
ing fractals, which by definition have difficult surfaces to intersect (since they have unbounded
area!) [Hart et al. 1989].

An alternative approach for rendering surfaces that do not admit analytic intersection solutions is
to convert them to an approximation that does, for example, a triangle mesh. A popular method for
doing so is Lorensen’s and Cline’s marching cubes algorithm [1987]. Conversely, it is often desir-
able to convert an existing triangle mesh into a signed distance function for integration with a ray
marcher (e.g., to achieve warping and smooth blending). Akleman and Chen [1999] give one im-
plementation of such an operation. Swoboda [2012] discusses both triangle-to-implicit conversion
and reverse in the context of modern GPUs.

The particular form of implicit surface defined by distance from a point set is very popular for
modeling fluids. Fedkiw worked extensively with these and the book that he coauthored is a good
reference [2003]. There’s an entire subfield of rendering called point-based graphics that directly
ray traces such representations, sometimes using implicit surface methods.

References

AKLEMAN, E., AND CHEN, J. 1999. Generalized distance functions. In 1999 Shape Modeling
International (SMI ’99), 1-4 March 1999, Aizu, Japan, 72–79. 19

BLINN, J. F. 1982. A generalization of algebraic surface drawing. ACM Trans. Graph. 1, 3 (July),
235–256. 18

GOMES, A., VOICULESCU, I., JORGE, J., WYVILL, B., AND GALBRAITH, C. 2009. Implicit
Curves and Surfaces: Mathematics, Data Structures and Algorithms, 1st ed. Springer Publishing
Company, Incorporated. 18

HART, J. C., SANDIN, D. J., AND KAUFFMAN, L. H. 1989. Ray tracing deterministic 3-d fractals.
In Proceedings of the 16th Annual Conference on Computer Graphics and Interactive Techniques,
ACM, New York, NY, USA, SIGGRAPH ’89, 289–296. 19

HART, J. C. 1993. Ray tracing implicit surfaces. Siggraph 93 Course Notes: Design, Visualization
and Animation of Implicit Surfaces, 1–16. 18

HART, J. C. 1996. Sphere tracing: A geometric method for the antialiased ray tracing of implicit
surfaces. The Visual Computer 12, 10, 527–545. 5

HOFFMAN, C., AND HOPCROFT, J. 1985. Automatic surface generation in computer
aided design. 92–100. http://www.cs.purdue.edu/homes/cmh/distribution/
papers/Geometry/geo1.pdf. 13

HORN, D. R., SUGERMAN, J., HOUSTON, M., AND HANRAHAN, P. 2007. Interactive k-d tree
GPU raytracing. In Proceedings of the 2007 Symposium on Interactive 3D Graphics and Games,
ACM, New York, NY, USA, I3D ’07, 167–174. 17

KEINERT, B., SCHÄFER, H., KORNDÖRFER, J., AND ANDMARC STAMMINGER, U. G. 2014.
Enhanced sphere tracing. Smart Tools & Apps for Graphics. http://erleuchtet.org/

˜cupe/permanent/enhanced_sphere_tracing.pdf. 5, 14, 18

http://graphics.cs.williams.edu/courses/cs371 19

http://www.cs.purdue.edu/homes/cmh/distribution/papers/Geometry/geo1.pdf
http://www.cs.purdue.edu/homes/cmh/distribution/papers/Geometry/geo1.pdf
http://erleuchtet.org/~cupe/permanent/enhanced_sphere_tracing.pdf
http://erleuchtet.org/~cupe/permanent/enhanced_sphere_tracing.pdf
http://graphics.cs.williams.edu/courses/cs371

CS371 2014 | NUMERICAL METHODS FOR RAY TRACING IMPLICITLY DEFINED SURFACES

LIKTOR, G. 2008. Ray tracing implicit surfaces on the GPU. Computer Graph-
ics and Geometry Journal 10, 3. http://www.cescg.org/CESCG-2008/papers/
TUBudapest-Liktor-Gabor.pdf. 18

LORENSEN, W. E., AND CLINE, H. E. 1987. Marching cubes: A high resolution 3d surface
construction algorithm. In Proceedings of the 14th Annual Conference on Computer Graphics
and Interactive Techniques, ACM, New York, NY, USA, SIGGRAPH ’87, 163–169. 19

OSHER, S., AND FEDKIW, R. P. 2003. Level set methods and dynamic implicit surfaces. Applied
mathematical science. Springer, New York, N.Y. 19

POPOV, S., GUNTHER, J., SEIDEL, H.-P., AND SLUSALLEK, P. 2007. Stackless kd-tree traversal
for high performance gpu ray tracing. Comput. Graph. Forum 26, 3, 415–424. 17

QUILEZ, I. 2008. Rendering worlds with two triangles with raytracing on the GPU in 4096
bytes. NVScene 2008 (August). http://www.iquilezles.org/www/material/
nvscene2008/rwwtt.pdf. 18

QUILEZ, I. 2014. formulanimations tutorial :: the principles of painting with maths. https:
//www.youtube.com/watch?v=0ifChJ0nJfM. 18

SWOBODA, M. 2012. Advanced procedural rendering in DirectX 11.
GDC12. http://directtovideo.wordpress.com/2012/03/15/
get-my-slides-from-gdc2012/. 18, 19

http://graphics.cs.williams.edu/courses/cs371 20

http://www.cescg.org/CESCG-2008/papers/TUBudapest-Liktor-Gabor.pdf
http://www.cescg.org/CESCG-2008/papers/TUBudapest-Liktor-Gabor.pdf
http://www.iquilezles.org/www/material/nvscene2008/rwwtt.pdf
http://www.iquilezles.org/www/material/nvscene2008/rwwtt.pdf
https://www.youtube.com/watch?v=0ifChJ0nJfM
https://www.youtube.com/watch?v=0ifChJ0nJfM
http://directtovideo.wordpress.com/2012/03/15/get-my-slides-from-gdc2012/
http://directtovideo.wordpress.com/2012/03/15/get-my-slides-from-gdc2012/
http://graphics.cs.williams.edu/courses/cs371

Index

ambient occlusion, 16
analytic solution, 3
antialiasing, 16

blending, 13
bounding sphere, 14
box, 6

continuous, 5
cylinder, 8

depth of field, 16
distance estimator, 5, 6

explicit equation, 3

gradient, 8

heightfield, 18

implicit equation, 3
intersection, 12
isosurface, 5

level set, 5

normal, 8

plane, 6, 16
primary rays, 3

rasterization, 3, 9, 17
ray casting, 3
ray marching, 4
relaxation, 14
rounded box, 7

scene graph, 15
shadows, 16
signed distance estimator, 5, 6
spatial data structure, 16
sphere, 6, 14, 16
sphere tracing, 5
subtraction, 12
surface normal, 8

torus, 7

union, 12

wheel, 7

	Primary Surfaces
	Analytic Ray Intersection
	Numerical Ray Intersection
	Ray Marching
	Distance Estimators
	Sphere Tracing
	Some Distance Estimators
	Sphere
	Plane
	Box
	Rounded Box
	Torus
	Wheel
	Cylinder

	Computing Normals
	A Simple GLSL Ray Caster
	Operations on Distance Estimators
	Some Useful Operators
	Union
	Intersection
	Subtraction
	Repetition
	Transformation
	Blending

	Increasing Performance
	Over-Relaxation
	Bounding Spheres
	Reintroducing Analytic Roots
	Other Optimization Strategies

	Some Online Examples
	Educational
	Impressive

	Further Reading

